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A study was undertaken to examine the flat plate relaxation behaviour of a turbulent 
boundary layer recovering from 90' of strong convex curvature (8,/R = 0.08), for a 
length of z 908, after the end of curvature, where So is the boundary layer thickness 
at the start of the curvature. The results show that the relaxation behaviour of the 
mean flow and the twrbulence are quite different. The mean velocity profile and skin 
friction coefficient asymptotically approach the unperturbed state and a t  the last 
measuring station appear to be fully recovered. The turbulence relaxation, however, 
occurs in several stages over a much longer distance. In the first stage, a stress 'bore ' 
(a region of elevated stress) is generated near the wall, and the bore thickens with 
distance downstream. Eventually it fills the whole boundary layer, but the stress 
levels continue to rise beyond their self-preserving values. Finally the stresses begin 
a gradual decline, but at the last measuring station they are still well above the 
unperturbed levels, and the ratios of the Reynolds stresses are distorted. These results 
imply a reorganization of the large-scale structure into a new quasi-stable stslte. The 
long-lasting effects of curvature highlight the sensitivity of a boundary layer to its 
condition of formation. 

1. Introduction 
In this paper, we describe an experimental study of the relaxation behaviour of a 

turbulent boundary layer perturbed by a region of strong convex curvature. The 
behaviour of a boundary layer downstream of a strong perturbation provides useful 
information concerning the effect of upstream history on the downstream flow. 
Recently, there has also been interest in the use of curvature as a means of drag 
reduction because convex curvature reduces skin friction (Bushnell 1983). The 
relaxation behaviour is therefore important from a practical viewpoint, as it 
determines how far downstream the drag reduction can be expected to continue. 

The response to the application of st'rong convex curvature, S,/R 2 0.05, is now 
reasonably well known, mainly through the experiments by So & Mellor (1973) (0.05 
< S,/R < 0.07), Gillis et al. (1980) and Gillis & Johnston (1983) (three similar 
studies, S,/R = 0.05 and 0.1). In all cases, convex curvature strongly reduced the 
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FIGURE 1. Reynolds shear stress, from Gillis et al. (1980) : 0,  upstream reference; a, 13" convex 
curvature; 0, 52" convex curvature; 0, s/6, = 7.9; X, s/6, = 21 ; 0,  s/6, = 42 (s is measured 
from the end of the curved section). 

turbulent mixing, resulting in a low skin friction and in mean velocity profiles which 
lacked fullness. The Reynolds stress levels were also strongly reduced, as shown for 
the shear stress in figure 1.  As expected, this effect was more pronounced in the outer 
half of the boundary layer, where the ratio of the 'extra ' strain rate due to curvature 
aV/ax divided by the principal strain rate aU/ay was largest (Bradshaw 1973). There 
the shear was 'turned off' (So & Mellor) and the normal stresses approached isotropy. 
Gillis & Johnston found that after 30" of turning, their shear stress profiles and those 
of So & Mellor collapsed when the distance from the wall, y, was scaled on R rather 
than on the local boundary layer thickness. Given the similar response of different 
boundary layers (in terms of U, S,/v) to curvature of varying strength (as measured 
by S,/R), they proposed that boundary layers perturbed by strong convex curvature 
approach the same asymptotic state. In this state, they defined the limit of strong 
convex curvature to occur when SO/R>O.05. They also inferred that the severe 
reduction of the shear stress in the outer part of the mean shear layer, the nearly 
isotropic normal stresses, and the scaling with R means that the region of convex 
curvature limits the size of the anisotropic, stress-containing structures to less than 
the region of mean velocity gradient ; the large eddies in the incoming boundary layer 
must then be 'destroyed or modified in such a way that the [upstream] history is lost ' 
(Gillis & Johnston, 1983). They proposed that if this perturbed boundary layer were 
allowed to relax on a flat plate its recovery would show a dual nature: an outer 
region containing the isotropic and decaying debris of the upstream boundary layer, 
and an active inner layer where new turbulence is produced, which grows into the 
outer region in a manner similar to normal turbulent boundary layer growth. 

A few experiments have also examined the initial relaxation from a curvature 
perturbation. Gillis & Johnston's work included a flat plate recovery length of 
35S040S, after the end of curvature. Smits, Young & Bradshaw (1979) subjected a 
turbulent boundary layer to 30" of strong (6,lR z 0.2) convex curvature and then 
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allowed i t  to relax on a flat plate in a mild favourable pressure gradient over a 
distance of approximately 606,. Both studies showed that the stress levels suppressed 
by curvature were regenerated on the flat plate; stress ratios such as a, = -m/? 
(where is twice the turbulent kinetic energy) recovered to the upstream value 
within a few 6,. Far enough downstream, however, the absolute stress levels were 
higher than in the upstream self-preserving layer (see, for example, figure 1). Thus, 
surprisingly, the long-term relaxation from stabilizing curvature resulted in increased 
turbulent mixing, compared to the unperturbed boundary layer. 

Another interesting experiment was performed by Castro & Bradshaw (1976) 
who investigated the relaxation of a turbulent mixing layer from stabilizing curva- 
ture. The turbulent mixing layer turned through 90" of strong convex curvature 
(SIR x 0.02) and then relaxed asymptotically to the self-preserving state. As for the 
case of boundary layer flows, they found that stabilizing curvature reduced 
turbulence levels in the mixing layer and that the recovery to the unperturbed state 
was markedly non-monotonic. The Reynolds stresses, triple products, and other 
turbulence qualities showed significant overshoots near the centreline of the shear 
layer before decreasing towards the unperturbed levels. Again, the structure 
parameter a, recovered monotonically and fairly quickly. Castro & Bradshaw 
attributed the over-recovery of the turbulence intensities to the suppression of the 
triple products and therefore presumably to the suppression of the large eddies, 
which take time to regenerate after curvature is removed ; the slow recovery of the 
large structures means that they cannot effectively redistribute the turbulence being 
regenerated near the centre part of the shear layer, at least initially. 

In the present experiment, a turbulent boundary was turned through 90" of strong 
convex curvature (S,,/R = 0.08) and then allowed to relax on a flat plate. This work 
is an extension of that done by Gillis & Johnston ; it differs from theirs in that the 
long-term evolution of the perturbed boundary layer was examined over an 
increased relaxation length ( x  WS,, versus 35S0406,, in their flow), and in that 
different types of measurements are presented, beyond mean flow and Reynolds- 
averaged results, which attempt tc describe the structural changes in the relaxing 
boundary layer. In  both studies, the pressure gradient was minimized to determine 
more easily the boundary layer relaxation from curvature effects. One complete set 
of measurements was made upstream of curvature in the unperturbed boundary 
layer, and this constituted a reference set. All other measurements were taken 
downstream of the curved region. No data were taken within the perturbation itself: 
this study is strictly limited to the relaxation of the boundary layer. 

2. Experimental facility and instrumentation 
The results were obtained in the subsonic, open-return wind tunnel shown in figure 

2. A 1.0 mm diameter wire was used to trip the boundary layers on all four walls of 
the 0.15 m x 1.22 m working section. The test-wall boundary layer developed in a 
zero pressure gradient with a free-stream velocity of 31 m/s ( U J v  = 2 x lo6 m-l) 
and a free-stream turbulence intensity of 0.3%. At a distance of 1.5 m downstream 
of the trip, the boundary layer had a Reynolds number based on momentum 
thickness Re, of 6000. At this point, the boundary layer was subjected to 90' of 
constant-radius strong convex curvature, with S,/R - 0.08 (6, = 22.7 mm, R = 
300 mm). To isolate curvature effects from those due to pressure gradient, the wall 
opposite the test wall was contoured to minimize the test-wall pressure gradient. The 
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FIGURE 2. Wind tunnel schematic. The streamwise coordinate s is measured from the end of the 
curved section. 

outer-wall boundary layer was removed by suction to prevent separation. At the exit 
from the curved section, the test-wall boundary layer was allowed to relax on a flat 
plate, again in zero pressure gradient, over a distance of 4.9 m. 

The presence of the bend introduced a source of secondary flow from the sidewall 
boundary layers. This was minimized by the use of high-momentum, low-mass-flow- 
rate jets located on the sidewalls near the beginning of curvature, as first suggested 
by So & Mellor (1973). The spanwise variations in skin friction and Reynolds stress 
over the centre half of the span were small (+_4 YO and k 10 %, respectively). 
Furthermore, downstream of the bend, the terms in the two-dimensional momentum 
equation balanced to within 1 3 % ,  and the flow was therefore judged acceptably 
two-dimensional. 

Three different experiments were performed, called Case I ,  Case 11, and Case 111. 
The bulk of the work presented here relates to Case I, where the streamwise pressure 
distribution was as shown in figure 3. Within the bend, the pressure deviated 
significantly from its upstream reference value, and C, varied by +_0.09%. At one 
point near the bend exit, the magnitude of the pressure gradient parameter p =  
(8*/7,) dp/ds was as large as 9. Although this indicates a strong pressure gradient, 
the strongest gradients are of short duration and of opposite sign, so that their 
integrated effect on the flow should be small. In  the mean, the pressure gradient 
imposed during curvature appears to be significant only in the initial stage of 
recovery; the effects of curvature seem to last much longer. This point is discussed 
in $3. 

A circular Pitot tube of 1.0 mm diameter was used to measure the total pressure 
in the boundary layer, and the skin friction was measured with Preston probes of 
diameter 1.0, 1.6, and 2.4, using the calibration suggested by Pate1 (1965). 

The one-point turbulence measurements were taken using DANTEC 55P05 
(normal-wire boundary layer) and 55P51 (crossed-wire) probes. The probes were 
modified so that the active wire lengths were reduced to 0.75 mm (length-to-diameter 
ratio of 150), and the spacing between crossed wires wits reduced to 0.4 mm (29 in 
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FIQURE 3. Streamwise static pressure distribution (Case I). 

wall units) to minimize spatial resolution difficulties (see Alving 1988 for further 
details). The rake of wires for multiple-point turbulence measurements was provided 
by Steve Robinson of NASA Ames. It consisted of eight normal wires (of which six 
were used) spaced 0.5 to 1.0 mm apart in the direction normal to the wall, resulting 
in a total span of 5.5 mm. The probe tip was only 25 mm upstream of the shaft and 
the probe had a large cross-sectional area, raising some doubts about possible flow 
blockage. However, the spectra measured by the rake showed no abnormalities, and 
the two-point correlations derived from the rake measurements were similar to those 
obtained using a much more slender two-wire probe (constructed using DANTEC 
55P01 probe bodies), so that blockage effects were inferred to be small. 

DANTEC 55DOl and 55M10 constant-temperature anemometers were used, 
operating at overheat ratios of 0.7 with frequency responses of a t  least 65 kHz (as 
determined by the square wave test). The signals were filtered at 25 kHz with a 
fourth-order Butterworth filter (Ithaco, model 4213). The one-point signals were 
digitized a t  2.5 and 50 kHz with a 12 bit A/D, LeCroy model LG8212A with a single 
32 kByte 8800A memory module attached. The data taken a t  the lower frequency 
were used for long-time averages, while the higher frequency data were used for 
spectral decomposition. The rake data were digitized at 250 kHz using a 10 bit A/D, 
LeCroy model TD8210, with two memory modules. 

For all of the one-point measurements, the wires were calibrated using a dynamic 
calibration scheme, as described by Perry (1982) and modified by Watmuff (1979) 
and Alving (1988). In  brief, the small perturbation sensitivity of each wire was 
measured directly by applying a known velocity perturbation to the probe and 
measuring the resulting voltage perturbation. These perturbation data were used to 
evaluate the coefficients in a curve-fit of the flow velocity to the anemometer output 
voltage. The resulting uncertainties were estimated to be less than f 3 %  for 2, 
- +5% for .;” and 3, and + 7 %  for -W. 
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3. Mean flow results 
The skin friction coefficients are shown in figure 4, and there appears to be 

generally good agreement among the various estimates of C,. Two exceptions to this 
agreement are worth discussing. First, there is some scatter in the initial recovery 
region. This may be expected, since the Preston probe calibration is affected by 
pressure gradients. Pate1 (1965) correlated the errors in the inferred skin friction 
using the pressure gradient parameter A ,  where A = (v/pu:) dplds. Between s/6, = 
4 and 10, d was estimated at  -0.006 or -0.007, and Patel's calibration suggests C, 
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FIQURE 4. (a )  Skin friction coefficient distribution (Case I ) :  Clauser chart: 0, Preston tube: 
+ , D = 1.0 mm; A, D = 1.6 mm ; 0, D = 2.4 mm. (b) Skin friction coefficient versus Re, (Case I) : 
--, Schlichting (1979) ; . . . . . . . . , Bradshaw, Ferris & Atwell (1967). Other symbols as in (a ) .  
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is over-estimated by 6% in this region. In the rest of the recovery, the pressure 
gradient was negligible. 

Other than in the initial recovery region, the skin friction results only show scatter 
around s/S, = 65-70. These measurements were retaken several times, without 
discovering the source of the discrepancy. Three-dimensionality was probably not 
the cause, as no significant indication of secondary flow was found during tunnel 
qualification. One potential source of the discrepancy could be the slight favourable 
pressure gradient at this measuring station (see figure 3). The Reynolds stress 
behaviour also shows an anomaly (see $4) which may be due to this small pressure 
gradient. 

Notwithstanding the difficulties in measuring skin friction, its recovery behaviour 
in unambiguous. At the bend exit, the low values of the skin friction reflect the 
stabilizing influence of convex curvature. Once the curvature is removed, the skin 
friction begins to recover and, initially, this recovery is quite fast; the skin friction 
doubles within 108,. Subsequently, the recovery rate decreases, but C, continues to 
increase through most of the recovery. 

Because the skin friction for an unperturbed flat plate boundary layer is a function 
of Reynolds number, the degree of recovery is best expressed in terms of C, versus 
Re, (figure 4b). In the early stage of recovery the bounuary layer is obviously far from 
equilibrium, but in the later stage (s/S, > 25), the measured skin friction appears to 
approach the flat plate correlations asymptotically. Given the uncertainty in the flat 
plate correlations for C, reported in the literature (see, for example, Smits, Matheson 
& Joubert 1983), it is difficult to say whether the last measured value has reached the 
flat plate level. In any case, the discrepancy, if it exists, is small. 

There remains the question of how the skin friction results from different 
experiments can be compared. The Reynolds number, pressure gradient, and 
strength and duration of curvature can all vary, and it is not immediately obvious 
how these parameters may affect the recovery. Gillis & Johnston showed that within 
the bend curvature has an ‘organizing’ influence on the skin friction, in that 
boundary layers with different So, (S,/R) and C, at the beginning of the same curved 
test rig showed very similar skin friction behaviour within the curved region. To 
examine the effect of pressure gradient, two further tests were performed (Cases I1 
and 111). In Case I1 the outer wall was concentric with the inner wall, and in Case 
111 the outer wall was contoured as described in $2. The resulting pressure gradients 
are shown in figure 5 .  Note that for Cases I1 and 111, U J v  = 1.6 x 106/m, compared 
with 2 x 106/m for Case I. For all three cases, the skin friction distributions are shown 
in figure 6, along with the results of Gillis et al. (1980) (90° turning, S,/R = 0.1, dp/ds 
small), Youssefmir (1982) (an extension of the Gillis & Johnston experiments), and 
Smits et al. (1979) (30° turning, S,/R = 0.2, strong pressure gradients in the bend, mild 
favourable pressure gradient downstream). This plot shows that the initial level of C, 
depends on the pressure gradient history ; however, this effect is quickly erased, and 
by s/S, - 25 the recovery behaviour of all the different flows looks remarkably 
similar. From these results, it  appears that the effect of presfjure gradient within the 
bend is only important near the beginning of recovery. The curvature effects are 
much more long-lasting, and the pressure gradients experienced within the bend in 
this work should not affect the long-term recovery behaviour of the boundary layer. 

The results shown in figure 6 have important implications for the potential of using 
convex curvature for drag reduction. The level of the skin friction in the relaxing 
boundary layer appears to be independent of the skin friction level a t  the end of the 
bend, except in the initial recovery region. Thus, although a short region of adverse 
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pressure gradient at  the end of the curved section can initially decrease the skin 
friction (consider Case I), there is not a lasting benefit for drag reduction on the flat 
plate. 

Initially, it was surprising to find that s/6, scaling collapsed the skin friction 
results of several investigators, because the results of Gillis & Johnston implied that 
the large-scale 'history containing ' eddies were removed by stabilizing curvature, 
and that the effective (stress-containing) boundary layer thickness decreased in the 
bend. In that case, the size of the upstream boundary layer should be irrelevant to 
the recovery process. However, as 6, depends on the Reynolds number, this scaling 
may just reflect the Reynolds number dependence of the recovery. 

The mean velocity profiles are plotted in figure 7. The logarithmic law of the wall 
is expressed in terms of U+S U l u ,  and y+ = yu,/v as 

1 
u+ = K - h y + + C ,  
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with K = 0.41 and C = 5.2 (these constants were suggested by deBrederode & 
Bradshaw (1974) as the best fit to the published data). At the bend exit, the effect 
of the boundary layer perturbation is shown by the short extent of the logarithmic 
region and by the large wake factor. Once the curvature is removed, the velocity 
profile initially changes quickly ; between the two stations at s/&, = 2 and 4, the wake 
factor decreases by 50%. The recovery rate remains high for the first 108,. With 
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further recovery, the Coles wake factor 71 asymptotically approaches a constant level 
of 0.76; this value is slightly higher than the upstream reference level of 0.68. 

At the bend exit the extent of the logarithmic region is small, but with streamwise 
recovery the log region grows, and it relaxes to its upstream level after only s/6, = 
25. This implies that the inner and outer regions have reached some sort of self- 
preserving balance after 256,. By integrating the mean velocity profiles, it can be 
shown that during the initial -126, of recovery the boundary layer mass flux 
remains approximately constant ; that is, no new mass is entrained into the boundary 
layer. The lack of mass entrainment may be partly due to the favourable pressure 
gradient for s/S, < 8, and this may partially account for the differences in the initial 
recovery behaviour measured by Gillis et ul. (1980). In their work the pressure 
gradient was practically zero throughout the bend, in contrast to the relatively 
strong pressure gradients seen within the bend in the present experiment (figure 3). 
They found that the boundary layer did not regain fullness for 206, after the end of 
curvature, and that the boundary layer entrainment did not go to zero as it does 
here. 

All the boundary layer thicknesses (6, a*, 8 )  increase through the bend, and then 
display a dip in the initial recovery region (figure 8). This dip is not an indication of 
a loss of mass flux m from the boundary layer [where m = (pU, (6-6*)]; rather, it 
indicates a redistribution of the mass flux within the boundary layer. This effect was 
also seen in the shape factor H and Clauser parameter G ,  which take large values at 
the exit from the bend. During the first N 106, after the end of curvature, H ,  and G 
recover approximately 75% of the way to their flat plate values. With increasing 
streamwise distance, the recovery contines but at  a much slower rate. The final levels 
of H and G are 1.35 and 7.54, compared with their upstream levels of 1.4 and 7.53. 

Hence, the mean flow recovery process is initially quite fast, showing large 
increases in the skin friction, the shape factor, and the extent of the logarithmic 
region, a similar decrease in the wake factor, and a regrowth in the fullness of the 
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FIQURE 9. (a) Normal stresses in the upstream boundary layer : A, p/u,Z ; 0,  ?/u,Z ; 0 ,  21.:. 
Filled in symbols are from Erm et al. (1987) at Re, = 5010. (b) Shear stress in the upstream 
boundary layer. Filled in symbols from Erm et al. (1987). Solid line from Klebanoff (1955). 

mean velocity profile. This stage lasts approximately 108, after the end of curvature, 
and pressure gradient effects may be important here. Subsequently, the mean flow 
relaxation continues at a decelerated rate, and the flat plate behaviour is approached 
asymptotically. At  the last measuring station the mean velocity profiles and the 
integral parameters appear fully recovered. 

- _ _  4. Turbulence results 
The three normal stresses (u2, v2, w2) and the shear -im are plotted in figure 9 for 

the upstream boundary layer (UW was close to zero, and VW was not measured). The 
18 FLM 211 
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measurements of Erm, Smits & Joubert (1987) a t  a comparable Reynolds number are 
also shown, and the two sets of data agree well. This agreement is further indication 
that the upstream reference boundary layer was close to a ‘standard’ two- 
dimensional boundary layer. The notion of ‘ universal ’ boundary-layer character- 
istics was questioned by Smits et al. (1977), who demonstrated that in fact 
significant discrepancies exist amongst widely accepted correlations for C,, H ,  G and 
wake factor n. The results presented here for the recovering boundary layer cast 
further doubt on the existence of a universal flat plate flow (see $6). 



Turbulent boundary layer relaxation from convex curvature 54 1 

2.5 - 

2.0 - 

3.0 

2.5 

2.0 

- 
u' 1.5 
u,' 

1 .o 

0.5 

(6) 

I 

0 0.2 0.4 0.6 0.8 1 .o 1.2 I .4 

Y l 6  

FIGURE 11. Relaxation behaviour of the normal component of the turbulence kinetic energy : (a) 
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Reynolds stress measurements in the relaxing boundary layer at the first three 
streamwise locations are plotted in figure 10 I(a)-lS(b). 

As seen from the near-wall measurements of s/u,Z, the flow closest to the wall 
recovers fastest, and in outer coordinates the perturbed profiles look very similar to 
the upstream case. This is not surprising, since response times are shortest near the 
wall. Away from the wall, the initial recovery from convex curvature is in terms of 
a stress 'bore ', a distinctly defined region of elevated stress moving away from the 
wall with increasing downstream distance. This bore occurs in all components of the 
normal stress and in the shear -uV, and its formation can be explained in terms of the 
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Reynolds stress transport equations, which express the coupling between the 
stresses. A t  the end of the convex curvature, the mean shear 8Ulay is reduced at  the 
wall and therefore increased away from the wall, relative to an unperturbed profile. 
The normal stress 7 is reduced but still important a t  the end of the curvature. Once 
the stabilizing effect of convex curvature is removed, the production term 2 aU/ay 
in the shear stress transport equation causes a regrowth of -uV; this in turn causes 
an increase in (twice) the turbulent kinetic energy via the production term -uU 
aU/ay. Thus, although convex curvature causes a decrease in turbulent mixing, it 
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distorts the boundary layer in a manner that provides the capability for the 
regeneration of the turbulence once this stabilizing influence is removed. 

As the boundary layer relaxation progresses on the flat plate, the stress bore 
initiated at the end of curvature thickens and moves away from the wall. Before 308, 
the stress levels are elevated across the whole boundary layer. The maxima in the 
Reynolds stress plots correspond - to the regions -- of maximum slope in the profiles of 
the transport velocities V, = uv2/m and V ,  = q2v/q2 (see Alving 1988 for details), 
indicating that the high stress levels are accompanied by an increase in turbulent 
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transport for -m and g. Thus, the production terms (for example, -T&U/ay) 
generate the elevated stress levels, and the turbulent transport terms (for example, 
a(&)/ay) lead to a stress bore where the outer edge of the elevated stress region 
' diffuses ' outwards with increasing downstream distance. 

In spite of the severely distorted stress profiles in the initial recovery, the normal 
stresses and the shear stress have very similar recovery behaviours. It is not 
surprising, therefore, that ratios of these stresses show very little difference from the 
upstream reference boundary layer. Figure 14 shows the ratio a, = - n / F  and the 
shear correlation coefficient R,, = uz)/u,,, or,,. The former is slightly more 

- 
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distorted in the initial recovery, especially in the outer part of the boundary layer 
where the shear -m is low. Gillis & Johnston (1983) postulated that the outer layer 
contains the isotropic decaying debris of the upstream large eddies ; this contributes 
to 2 but not to -@@, resulting-in low a,. However, a, recovers quickly, and neither 
a, nor the anisotropy ratio g / v 2  shows a severe perturbation comparable with those 
of the absolute stress levels. 

The disappearance of the pronounced stress bore is taken to mark the end of the 
first stage of recovery. 

The Reynolds stress profiles in the second and third stages of relaxation are shown 
in figures 10(b--113(b). In the second stage of recovery (256, c: s < 456,), where the 
mean velocity profiles are still recovering, the rate of change slows, but the stress 
levels continue to increase uniformly above their self-preserving levels. In the third 
stage (s > 436,), where the skin friction and velocity profiles have fully recovered, the 
stress levels begin to decrease ; this is first seen at 646, and continues at  876,. The only 
exception is in the streamwise component of the normal stress; especially near the 
wall, 2 actually increases at  the last measuring station. This may be caused by the 
slight adverse pressure gradient at this location. 

The third stage of recovery occurs at a considerably slower rate than the earlier 
stages, and differences between the last two measured profiles are slight, although 
they are separated by 236,. Perhaps the elevated stresses would eventually return to 
‘normal’ flat plate levels, given a long enough recovery length. However, the 
extremely slow rate of change of the stress profiles in the third stage of recovery 
implies that the driving force for this return is slight. For example, the transport 
velocities at  the last measuring station looked very similar to the upstream flat plate 
profile. 

The far downstream behaviour of the ‘structure parameter’ a, shown in 
figure 14 (a )  is somewhat surprising. Although at s/S, = 17 (near the end of the first 
stage) the distribution of a, looks very much like that of the upstream profiles, its 
level has fallen across the boundary layer by the last measuring station. The shear 
correlation coefficient R,, (shown in figure 14 (b )  for the later recovery) has a similar 
behaviour in both the initial and the far downstream recovery. The anisotropy ratio, 
however, remains quite like the upstream profile. Thus, the relative magnitudes of 2 
and 7 are comparable with the unperturbed case, while -m is relatively less. 
Although these downstream charges in a, and R,, are first seen near a region of slight 
pressure gradient, it is not likely that such a weak change in pressure would cause 
significant changes in a, and R,,. These altered stress ratios may be a subtle 
indication of a fundamental change in the structure of the large-scale vorticity, 
although the measurements presented in $5 do not reflect this structural change. 
Inaccurate measurements of u and v could distort these ratios, _ - -  but with the dynamic 
calibration technique used here the relatively small errors in u2, v2, w2, and -m could 
not account for the 20 % drop in a,. In addition, a few repeated measurements near 
the wall in the last downstream station confirmed the results presented here. Thus, 
these trends for a, and R,, appear to be real. 

To summarize, the initial regrowth of the turbulence levels suppressed by the 
curvature occurs through a stress bore which is generated near the wall and carried 
outward by turbulent transport. In spite of the distortion this bore causes in the 
absolute stress levels, the various stresses change in a similar manner ; therefore the 
stress ratios are not severely perturbed, and they recover quickly and monotonically. 
In the second stage of recovery, the bore has grown to fill the entire shear layer ; 
however, the stress levels continue to rise, at a decreased rate, above the upstream 
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levels. The third stage is marked by a drop in the stress levels, but the recovery rate 
is so slow that only a slight difference is measured over the last 236,. The implication 
is that the eventual recovery to the upstream level would take a significantly longer 
relaxation length. In addition, the relative distribution of the components of the 
Reynolds stress tensor is distorted, as indicated by the decreasing level of a,. 
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Relative to the self-preserving layer, there is less shear stress, given the level of 
turbulent kinetic energy. Thus, the Reynolds stress measurements indicate that, 876, 
after the end of curvature, the boundary layer is still quite different from the 
upstream self-preserving layer, both in the magnitude and in the distribution of the 
turbulent stresses. Clearly a very long distance would be required to complete the 
recovery process. This is in contrast to the mean flow behaviour, which does not look 
significantly different from the unperturbed case at  the last measuring station. 

To investigate the relaxation behaviour further, the higher-order moments were 
examined, along with the u-v statistics using the quadrant technique (Lu & 
Wilmarth 1973). The spectral content of the turbulence was also determined. 

In the unperturbed boundary layer, statistical analysis confirms the results of 
earlier works. The velocity fluctuations are fairly Gaussian in the inner layer, 
whereas very close to the wall and near the outer edge of boundary layer the 
fluctuations depart from a Gaussian probability distribution. In the outer layer the 
large fourth-order moment (flatness) implies a highly intermittent signal, attributed 
to the entrainment of free-stream fluid by the large-scale boundary layer structure. 
Quadrant analysis shows that, in the inner (Gaussian) part of the layer, activity in 
Quadrant 2 (u negative, v positive) and Quadrant 4 (u positive, v negative) is equally 
probable and contributes almost equally to the shear stress -uv (figure 15). With 
increasing distance from the wall Quadrant 2 outflow events become less probable, 
while simultaneously contributing more to the shear stress, with the converse true for 
Quadrant 4 events. Thus, the outer structure of the undisturbed boundary layer is 
characterized by the importance of energetic outflow events. 

The statistics showed that in the initial relaxation from curvature, the low stress 
levels in the outer part of the boundary layer correspond to Gaussian-like velocity 
fluctuations typical of the inner layer in the undisturbed case (figure 16). The flatness 
was quite reduced, implying a reduction in the outer layer intermittency. In addition, 
the Quadrant 2 events are less dominant in determining the shear stress. (A 
suppresion in Quadrant 2 (outflow) events is consistent with the stabilizing effect of 
convex curvature.) These indications imply that the anisotropic large-scale 
structures are destroyed or at least weakened by convex curvature. 

In the inner part of the layer, the Reynolds stress bore is related, but not identical, 
to areas of distortion in the p.d.f.’s. The leading edge of the stress bore corresponds 
to a region of non-Gaussian u-  and v-fluctuations, and the sharp gradient of the bore 
is in the region of energetic outflow events. Thus, the bore may indicate the size of 
the largest structures regrowing from the wall. The elevated stress levels themselves 
do not indicate distortions in the p.d.f.s. 

By the point where the stress bore fills the whole boundary layer, the distribution 
of velocity fluctuations in (u, v)-space looks very similar to that in the unperturbed 
boundary layer. Presumably, the large-scale structures have regrown to  fill the entire 
shear layer. The elevated stress levels which persist far downstream are therefore not 
associated with distortions in (u, v)-space. This is reflected in the similarity of the 
anisotropy ratio between the upstream and downstream boundary layers, as noted 
earlier. 

Spectral decomposition shows that, for a given streamwise location, the spectra 
scale on the local broad-band turbulence level and a fixed time-scale, S/U,. 
Surprisingly, this scaling holds even for the most severely perturbed boundary layer 
near the exit from the bend (see figure 17). 

In comparisons between different streamwise locations, the major differences 
between the upstream reference and the recovering layers are in the low-frequency 
part of the spectra, implying differences in the large-scale boundary layer structure. 



548 A .  E .  Alving, A .  J .  Smita and J .  H .  Wutmuff 

5 

4 -  
(4 

-5  - 4  -3  - 2  - 1  0 1 2 3 4 5 
U I u r m s  

- 4  1 
-5  1 I I I I I I I I I 

I 

- 5  - 4  - 3  - 2  - 1  0 1 2 3 4 

3.10 

2.48 

1.86 

1.24 

0.62 

U 

O G* 
-0.62 

- 1.24 

- 1.86 

- 2.48 

-3.10 

3.20 

2.56 

1.92 

1.28 

0.64 

O L  
"rms 

-0.64 

- 1.28 

- 1.92 

-2.56 

- 3.20 

UJU,,, 

FIGURE 16. Contours in (u, v)-space showing contributions to -uv for the boundary layer just 
downstream of curvature (s/So = 4) for y/S = 0.7. 

At the exit from the bend the low-frequeng component is suppressed near the wall 
and the low-frequency parts of the 7 and w2 spectra regrow before the 2 spectra. At 
the other stations, all three components of the turbulence kinetic energy regrow 
together, and far downstream the low-frequency contributions of all components are 
significantly elevated. 
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Spatial integration effects prevented a detailed investigation of the higher 
frequency range. However, all of the spectra appear to approach a universal curve 
in the inertial subrange, implying that the regrowth of the Reynolds stresses does 
not disturb the 'universal ' part of the spectral distribution. 

5. Multiple-point measurements 
Large-scale coherent structures are believed to be important for turbulent 

transport in unperturbed boundary layers ; furthermore, convex curvature appears 
to affect these structures dramatically. Simultaneous multiple-point measurements 
were therefore made to provide information about these structures in the 
unperturbed and recovering boundary layer. 

Data were taken at  several streamwise locations (upstream and at  s/S, = 3,46,91) 
using a rake of six normal wires separated in the direction normal to the wall ; the 
distance between the top and bottom wire was 5.5 mm. The probe was transversed 
from near the wall to beyond the edge of the boundary layer. 

Cross-correlations R,, (7 ; f )  were calculated for various pairs of the six wires, and 
this information was interpreted in terms of a large-scale ' structure angle ' 8 defined 
by Spina & Smits (1987). The concept is illustrated in figure 18. Consider a large-scale 
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structure, inclined towards the wall a t  some characteristic angle 6, convecting 
downstream a t  a velocity U,. If the structure is large enough to span both wires, the 
velocity signal resulting from this structure will be measured first by the wire farther 
from the wall and, a t  a later time, by the wire closer to the wall. The peak in the 
broad-band cross-correlation, R,, (r ; t), determines the time delay for which the 
outputs from the two wires are, on the average, most similar. Along with U, and 6 
(wire separation) this time delay r,,, can be converted to the average structure 
angle, 6 : 

0 = arctan ~ 

[uc L3 * 
Of course, some estimate must be made for the convection velocity. In this work we 
assumed U, = O.SU, ; however, the choice of U, is not critical to the results presented 
here. For instance, a 10% change in U, results in only a 3" change in 0 (maximum), 
which is less than the scatter in the data. 

The peak in the crosa-correlation and the average structure angle are plotted 
versus y/S in figure 19, and both plots show a strong dependence on wire separation. 
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However, for 6/6 > 0.16, the structure angle is independent of 6 within the scatter of 
the data. A possible explanation for this behaviour is the effect of the small-scale, 
more nearly isotropic eddies. For small 6,  small eddies can span both wires, and since 
they have a more random orientation, they tend to bias the cross-correlation towards 
7 = 0 (0 = 90") on the average. As 6 increases, fewer isotropic eddies pass by both 
wires, and only the large-scale structures contribute to the cross-correlation. Thus, 
the results from the largest wire separations are probably more representative of the 
large-scale structure angle. This angle shows some variation across the layer; at 
y / S  = 0.3,8 - 25"-35", while at y/6 = 0.8,8 - 35'45". For y / 6  < 0.2, the trend in 8 
and the results for smaller E imply that 8 continues to decrease near the wall. This 
demonstrates the problem inherent in some previous approaches where the outer 
flow structure angle was measured with one sensor fixed at or near the wall (Brown 
& Thomas 1977; Robinson 1986). Such correlations will show an artificially large lag 
time (small angle) because of the small structure angle near the wall. Two travelling 
wires separated by a fixed distance give a measure of the local structure angle in the 
outer part of a boundary layer. The present results give quantitative experimental 
support to the conclusion Head & Bandyopadhyay (1981) drew from their smoke 
flow visualization : that a turbulent boundary layer consists largely of hairpin 
vortices inclined at 40"-50" to the wall, extending throughout the boundary layer. It 
is not clear that the correlations presented here are explicity due to hairpin vortices ; 
however, they are consistent with the observation of large-scale structures spanning 
the entire shear layer. 

For a given 6,  figure 19(a) shows that the peak in the cross-correlation is fairly 
constant across most of the boundary layer. This observation supports the idea that 
this technique detects the same structure at different points in the boundary layer ; 
it also implies that similar structures fill the entire shear layer. However, the peak 
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correlation falls off near the wall ; the bars in figure 19 (a) mark the wire locations for 
three sets of correlations for which one wire is at  y+ = 30 (y/6 = 0.02). Clearly, the 
correlation in velocity fluctuations between the wall region and the outer flow is 
significantly less than the correlation between two points in the outer flow. 

The peak cross-correlations and average structure angle are plotted in figures 
20-22 for three streamwise locations after the end of curvature, at s/6, = 3, 46 and 
91. 

Near the exit from the bend, figure 20, the correlation levels are significantly lower 
than the upstream values for comparable ,$/a, and this effect becomes more 
pronounced as y decreases for all wire separations shown. The increase in correlation 
with y may be a reflection of the suppressed turbulence intensities in the outer half 
of the boundary layer ; however, even well into the outer layer the correlation level 
is lower than upstream. 

In spite of the reduction in correlation level, the average structure angle at  the end 
of curvature looks much the same as the upstream angle. Again, these angles 
measured for various 6 seem to converge for ,$,’a > 0.15. Apparently, some large-scale 
structure does survive the curvature and it is still inclined to the wall at the upstream 
characteristic angle. This should not be taken to imply that the structure is 
unaffected by curvature. As indicated earlier, the boundary layer does not entrain 
new mass during the initial N 124, of recovery, and the Reynolds stresses were 
strongly damped in the outer part of the layer during the initial recovery. Hence, 
the outer-layer ‘structure’ indicated in figure 16 cannot be very strong. The 
correlations are probably detecting the weakened remnants of the structure entering 
the bend, and this only because the background turbulence level is quite low. 

Near the well, the low correlation levels could indicate that the regrowing 
turbulence is extremely chaotic and that the concept of a ‘typical’ structure is 
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inappropriate. Given the relatively large size of the stress bore after only 36, of 
recovery, it is clear that some extremely energetic mixing must occur following the 
step change in curvature. Thus the correlation levels could be washed out by the 
great variety in the individual coherent motions. Alternatively, the changes in the 
correlation levels could reflect a change in shape of the average structure. As pointed 
out by Perry, Li & Marusic (1988) and Fernando & Smits (1988) the mean velocity 
profile U(y)  depends only on the distribution of transverse vorticity, whereas all 
components of vorticity contribute to the Reynolds stresses. The reduction in mean 
shear caused by the step change to convex curvature may indicate that the vorticity 
of the large structures is realigned towards the streamwise direction. Realignment of 
the vorticity of the large-scale structures towards the streamwise direction would 
tend to increase 3 and w 2  but both of these quantities are reduced in the outer region 
of the layer after curvature. Therefore if realignment of the vorticity has occurred 
the structures in the outer layer must be extremely weak. The reduced strength of 
the vorticity could be the result of cancellation of regions of vorticity of opposite sign 
caused by a more rapid merging of the 'legs' of the structures, as a result of the 
curvature. Similarly, after the step change back to the flat plate, the regrowth in the 
skin friction may signal another reorientation of the new structures formed at  the 
wall. As these structures grow away from the wall into the structures created within 
or before the bend, the two-point correlation measurements could be washed out by 
the dissimilarity of the structures contributing to the correlation. 

As the perturbed boundary layer relaxes on the flat plate, the cross-correlation for 
a given wire separation becomes constant with y, at levels comparable with the 
upstream levels of similar values of iJ8 and, the average structure angle follows the 
same distribution as in the upstream unperturbed layer. 
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6. Concluding remarks 
The state of the outer part of the boundary layer at the first recovery station 

indicates the effect of the curvature perturbation. Some large-scale structure does 
appear to survive the bend but i t  is greatly weakened and largely inactive. It cannot 
effectively transport momentum (low shear stress) and it does not entrain new fluid 
into the layer. Spectral measurements show a decrease in the low-frequency 
fluctuations. These results are consistent with the measurements and speculations of 
earlier workers. 

In the recovery from the effects of curvature, the behaviour of the mean flow and 
the turbulence has been shown to be qualitatively quite different. In the first lOS,, 
the mean flow recovery is fast, and pressure gradient effects may be important in the 
results reported here. Subsequently the relaxation rate decreases and the mean flow 
parameters approach the flat plate levels asymptotically (and monotonically), One 
important aspect of these measurements is the documentation of the skin friction 
behaviour and its implication for drag reducation. The relaxation behaviour of the 
skin friction measurements from all available experiments were shown to scale on 
s/S,, once the effects of the pressure gradient history had dissipated. In the present 
experiment, the skin friction doubled in the first 108, of recovery, so that any drag 
reduction benefits from curvature appear to be relatively short-lived. 

The turbulence relaxation process is much more complicated. The initial response 
to the step change in curvature (and to the pressure gradient over the first 86,) is seen 
in the wall region, where the Reynolds stresses are regenerated. The stresses move 
outward via a stress bore, and turbulent transport is an important mechanism in this 
process. The stress ratios within the bore are very similar to those in the unperturbed 
profile, implying that the stress redistribution mechanism is unchanged in the 
relaxing boundary layer. The regrowth of the stress levels is accompanied by an 
increase in the low-frequency fluctuations. An analysis of the statistics of the 
fluctuations implies that the stress bore is similar to an inner boundary layer growing 
into a passive turbulent outer field, and presumably this inner field includes 
organized vortical structures typical of the new flat plate boundary condition. 

Baskaran, Smits & Joubert (1987) suggested that internal layers are found in 
response to steps changes in curvature when Ak* > 0.37 x where Ak* = u/Ru,,. 
In this flow, Ak* x 0.7 x However, the mean velocity and the Reynolds stress 
level in the inner part of the layer both change rapidly once the curvature is removed, 
which is more characteristic of the response to step changes in pressure gradient. 
Thus the initial recovery is partially driven by the short region of favourable pressure 
gradient for s/6, < 8. This could account for the different initial relaxation behaviour 
seen by Gillis & Johnston; in their study pressure gradient effects were an order of 
magnitude smaller, and the changes in Reynolds stresses were not accompanied by 
a regrowth in fullness of the mean velocity profile. Therefore, although the internal 
layer may be a useful concept, it  seems too simplistic to describe accurately the 
details of the recovery behaviour observed in the present experiment. Given the 
extent of the stres bore a t  the first recovery station, it is clear that the virtual origin 
of this internal layer must be upstream of the step change in curvature. 

It seems an oversimplification to state (Baskaran et al. 1987) that an internal layer 
developed in response to step changes in curvature grows completely independent of 
the outer layer. In the present case, it is difficult to see how the structures regrowing 
from the wall could be uninfluenced by the appreciable turbulence levels in the outer 
part of the layer, and it seems that the weak large-scale structures which are present, 
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must at least affect the boundary conditions on the inner layer. In any case, the 
concept of an independent internal layer cannot be useful for a long distance 
downstream. In the present case, the stress bore fills the whole mean shear layer at  
a distance 20S0-256, after the end of curvature, and yet the boundary layer is still 
very far from resembling a typical flat plate layer. 

In addition, the stresses remain much larger than their self-preserving values even 
far downstream. As noted earlier, Gillis & Johnston, and Smits et al. (1979) also 
measured high stress levels at  their farthest downstream stations ($/So w 40 and 60, 
respectively). The stress levels remain high for the rest of the recovery, and it is only 
at the last two measuring stations that any reduction occurs, and then only slowly. 
The falling stress levels are accompanied by small changes in the stress ratios. These 
changes are rather subtle but they support the idea that some stable reorganization 
of the large-scale structure must be responsible for the longevity of the elevated 
stress levels. The relaxation rate eventually decreases to a point where the timescales 
are much longer than the large-eddy time scales. Even if we take the point where the 
mean velocity profiles have fully recovered (a/&, = 46) to mark the beginning of the 
final stress relaxation, then at  a distance of more than 30 local boundary layer 
thicknesses downstream ($/So = 91), little relaxation has actually occurred. If 106 is 
a reasonable measure of the distance over which large eddies retain their identity, 
then these eddies are being replicated in some persistent, quasi-stable cycle. 

Apart from its implications for the large-scale structure, the fact that the 
relaxation is not complete so far downstream after the end of curvature brings into 
doubt whether any boundary layer is every truly indepeadent of its conditions of 
formation. This observation, in turn, casts further doubt on the concept of the 
standard ‘universal ’ flat plate boundary layer. 
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